000 02480nam a22003977a 4500
999 _c132139
_d132139
003 phtghnu
005 20240430151718.0
007 ta
008 201110s2021 cau 000 0 eng
010 _a 2020949998
020 _a9781526424174
_q(paperback)
040 _beng
_erda
_cHNU
042 _apcc
082 _223
_3GC
_a519.536 M36
_b2021
100 1 _aMartin, Peter,
_eauthor.
245 1 0 _aLinear regression: an introduction to statistical models /
_cPeter Martin.
263 _a2203
264 1 _aThousand Oaks, California :
_bSAGE Publications Inc.,
_c2021.
300 _a xxii, 178 pages :
_billustrations ;
_c 24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 _a The SAGE quantitative research kit
504 _aIncludes bibliographical references and index.
505 _aWhat is a statistical model? Simple linear regression Assumptions and transformations Multiple linear regression: A model for multivariate relationships Multiple linear regression: Inference, assumptions, and standardization Where to go from here
520 _aPart of The SAGE Quantitative Research Kit, this text helps you make the crucial steps towards mastering multivariate analysis of social science data, introducing the fundamental linear and non-linear regression models used in quantitative research. Peter Martin covers both the theory and application of statistical models, and illustrates them with illuminating graphs, discussing: • Linear regression, including dummy variables and predictor transformations for curvilinear relationships • Binary, ordinal and multinomial logistic regression models for categorical data • Models for count data, including Poisson, negative binomial, and zero-inflated regression • Checking model assumptions and the dangers of overfitting
521 _aCoED
_bBachelor of Secondary Education major in Mathematics
546 _aIn English
650 _aRegression analysis.
650 _aMathematical models.
650 _aQuantitative research.
906 _a0
_bibc
_corignew
_d2
_eepcn
_f20
_gy-gencatlg
942 _2ddc
_cBK
_h500-599